Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Genes (Basel) ; 14(9)2023 08 30.
Article in English | MEDLINE | ID: mdl-37761870

ABSTRACT

Prostate cancer (PC) and colon cancer significantly contribute to global cancer-related morbidity and mortality. Thymoquinone (TQ), a naturally occurring phytochemical found in black cumin, has shown potential as an anticancer compound. This study aimed to investigate the effects of TQ on the expression profile of key tumor suppressor and onco-suppressor miRNAs in PC3 prostate cancer cells and HCT-15 colon cancer cells. Cell viability assays revealed that TQ inhibited the growth of both cell lines in a dose-dependent manner, with IC50 values of approximately 82.59 µM for HCT-15 and 55.83 µM for PC3 cells. Following TQ treatment at the IC50 concentrations, miRNA expression analysis demonstrated that TQ significantly downregulated miR-21-5p expression in HCT-15 cells and upregulated miR-34a-5p, miR-221-5p, miR-17-5p, and miR-21-5p expression in PC3 cells. However, no significant changes were observed in the expression levels of miR-34a-5p and miR-200a-5p in HCT-15 cells. The current findings suggest that TQ might exert its antiproliferative effects by modulating specific tumor suppressor and onco-suppressor miRNAs in prostate and colon cancer cells. Further investigations are warranted to elucidate the precise underlying mechanisms and to explore the therapeutic potential of TQ in cancer treatment. To the best of our knowledge, this is the first report regarding the effect of TQ on the miRNA expression profile in colon and prostate cancer cell lines.


Subject(s)
Colonic Neoplasms , MicroRNAs , Prostatic Neoplasms , Male , Humans , MicroRNAs/metabolism , Prostate/pathology , PC-3 Cells , Cell Line, Tumor , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics
2.
Microorganisms ; 11(9)2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37764112

ABSTRACT

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), poses a global health challenge and is responsible for over a million deaths each year. Current treatment is lengthy and complex, and new, abbreviated regimens are urgently needed. Mtb adapts to nutrient starvation, a condition experienced during host infection, by shifting its metabolism and becoming tolerant to the killing activity of bactericidal antibiotics. An improved understanding of the mechanisms mediating antibiotic tolerance in Mtb can serve as the basis for developing more effective therapies. We performed a forward genetic screen to identify candidate Mtb genes involved in tolerance to the two key first-line antibiotics, rifampin and isoniazid, under nutrient-rich and nutrient-starved conditions. In nutrient-rich conditions, we found 220 mutants with differential antibiotic susceptibility (218 in the rifampin screen and 2 in the isoniazid screen). Following Mtb adaptation to nutrient starvation, 82 mutants showed differential antibiotic susceptibility (80 in the rifampin screen and 2 in the isoniazid screen). Using targeted mutagenesis, we validated the rifampin-hypersusceptible phenotype under nutrient starvation in Mtb mutants lacking the following genes: ercc3, moeA1, rv0049, and rv2179c. These findings shed light on potential therapeutic targets, which could help shorten the duration and complexity of antitubercular regimens.

3.
Plants (Basel) ; 12(9)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37176813

ABSTRACT

The pharmacological properties of plants lie in the content of secondary metabolites that are classified into different categories based on their biosynthesis, structures, and functions. MicroRNAs (miRNAs) are small non-coding RNA molecules that play crucial post-transcriptional regulatory roles in plants, including development and stress-response signaling; however, information about their involvement in secondary metabolism is still limited. Cumin is one of the most popular seeds from the plant Cuminum cyminum, with extensive applications in herbal medicine and cooking; nevertheless, no previous studies focus on the miRNA profile of cumin. In this study, the miRNA profile of C. cyminum and its association with the biosynthesis of secondary metabolites were determined using NGS technology. The sequencing data yielded 10,956,054 distinct reads with lengths ranging from 16 to 40 nt, of which 349 miRNAs were found to be conserved and 39 to be novel miRNAs. Moreover, this work identified 1959 potential target genes for C. cyminum miRNAs. It is interesting to note that several conserved and novel miRNAs have been found to specifically target important terpenoid backbone, flavonoid biosynthesis, and lipid/fatty acid pathways enzymes. We believe this investigation will aid in elucidating the implications of miRNAs in plant secondary metabolism.

4.
bioRxiv ; 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37090629

ABSTRACT

Mycobacterium tuberculosis ( Mtb ), the causative agent of tuberculosis (TB), poses a global health challenge and is responsible for over a million deaths each year. Current treatment is lengthy and complex, and new, abbreviated regimens are urgently needed. Mtb adapts to nutrient starvation, a condition experienced during host infection, by shifting its metabolism and becoming tolerant to the killing activity of bactericidal antibiotics. An improved understanding of the mechanisms mediating antibiotic tolerance in Mtb can serve as the basis for developing more effective therapies. We performed a forward genetic screen to identify candidate Mtb genes involved in tolerance to the two key first-line antibiotics, rifampin and isoniazid, under nutrient-rich and nutrient-starved conditions. In nutrient-rich conditions, we found 220 mutants with differential antibiotic susceptibility (218 in the rifampin screen and 2 in the isoniazid screen). Following Mtb adaptation to nutrient starvation, 82 mutants showed differential antibiotic susceptibility (80 in the rifampin screen and 2 in the isoniazid screen). Using targeted mutagenesis, we validated the rifampin-hypersusceptible phenotype under nutrient starvation in Mtb mutants lacking the following genes: ercc3 , moeA1 , rv0049 , and rv2179c . These findings shed light on potential therapeutic targets, which could help shorten the duration and complexity of antitubercular regimens. Importance: Treatment of Mtb infection requires a long course of combination antibiotics, likely due to subpopulations of tolerant bacteria exhibiting decreased susceptibility to antibiotics. Identifying and characterizing the genetic pathways involved in antibiotic tolerance is expected to yield therapeutic targets for the development of novel TB treatment-shortening regimens.

6.
Nat Commun ; 14(1): 115, 2023 01 07.
Article in English | MEDLINE | ID: mdl-36611026

ABSTRACT

Aberrant pro-survival signaling is a hallmark of cancer cells, but the response to chemotherapy is poorly understood. In this study, we investigate the initial signaling response to standard induction chemotherapy in a cohort of 32 acute myeloid leukemia (AML) patients, using 36-dimensional mass cytometry. Through supervised and unsupervised machine learning approaches, we find that reduction of extracellular-signal-regulated kinase (ERK) 1/2 and p38 mitogen-activated protein kinase (MAPK) phosphorylation in the myeloid cell compartment 24 h post-chemotherapy is a significant predictor of patient 5-year overall survival in this cohort. Validation by RNA sequencing shows induction of MAPK target gene expression in patients with high phospho-ERK1/2 24 h post-chemotherapy, while proteomics confirm an increase of the p38 prime target MAPK activated protein kinase 2 (MAPKAPK2). In this study, we demonstrate that mass cytometry can be a valuable tool for early response evaluation in AML and elucidate the potential of functional signaling analyses in precision oncology diagnostics.


Subject(s)
Leukemia, Myeloid, Acute , Precision Medicine , Humans , Signal Transduction , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Phosphorylation , p38 Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System/physiology
7.
J Biochem Mol Toxicol ; 36(9): e23134, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35695328

ABSTRACT

MicroRNAs (miRNAs) are evolutionary conserved small noncoding RNA molecules with a significant ability to regulate gene expression at the posttranscriptional level either through translation repression or messenger RNA degradation. miRNAs are differentially expressed in various pathophysiological conditions, affecting the course of the disease by modulating several critical target genes. As the persistence of irreversible molecular changes caused by cigarette smoking is central to the pathogenesis of various chronic diseases, several studies have shown its direct correlation with the dysregulation of different miRNAs, affecting numerous essential biological processes. This review provides an insight into the current status of smoking-induced miRNAs dysregulation in chronic diseases such as COPD, atherosclerosis, pulmonary hypertension, and different cancers and explores the diagnostic/prognostic potential of miRNA-based biomarkers and their efficacy as therapeutic targets.


Subject(s)
MicroRNAs , Biomarkers , Chronic Disease , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Prognosis , Smoking/adverse effects
8.
Arch Microbiol ; 204(7): 365, 2022 Jun 04.
Article in English | MEDLINE | ID: mdl-35661924

ABSTRACT

Candidatus Branchiomonas cysticola is an intracellular, gram-negative Betaproteobacteria causing epitheliocystis in Atlantic Salmon (Salmo salar L.). The bacterium has not been genetically characterized at the intraspecific level despite its high prevalence among salmon suffering from gill disease in Norwegian aquaculture. DNA from gill samples of Atlantic salmon PCR positive for Cand. B. cysticola and displaying pathological signs of gill disease, was, therefore, extracted and subject to next-generation sequencing (mNGS). Partial sequences of four housekeeping (HK) genes (aceE, lepA, rplB, rpoC) were ultimately identified from the sequenced material. Assays for real-time RT-PCR and fluorescence in-situ hybridization, targeting the newly acquired genes, were simultaneously applied with existing assays targeting the previously characterized 16S rRNA gene. Agreement in both expression and specificity between these putative HK genes and the 16S gene was observed in all instances, indicating that the partial sequences of these HK genes originate from Cand. B. cysticola. The knowledge generated from the present study constitutes a major prerequisite for the future design of novel genotyping schemes for this bacterium.


Subject(s)
Bacterial Infections , Burkholderiales , Fish Diseases , Salmo salar , Animals , Bacterial Infections/microbiology , Burkholderiales/genetics , Fish Diseases/microbiology , Genes, Essential , Gills/microbiology , RNA, Ribosomal, 16S/genetics
10.
Data Brief ; 42: 108068, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35356318

ABSTRACT

Kelps or brown algae are a wide group of marine macroalgae that play an important role in aquatic ecosystems and generally have high commercial value. To facilitate brown algal studies, we report the complete genome sequence of the largest kelp Macrocystis pyrifera. The whole genome is ∼428 Mb in size, comprises 44,307 scaffolds with an average GC content of 47%, and is predicted to contain a total of 24,778 genes. 18S sequence-based phylogenetic analysis revealed that littoral brown seaweed Scytosiphon lomentaria is the closest species of M. pyrifera. Numerous genes identified in this dataset are involved in genetic information processing, signaling, and cellular processes, carbohydrate metabolism, and terpenoids biosynthesis.

11.
Genes (Basel) ; 13(2)2022 01 22.
Article in English | MEDLINE | ID: mdl-35205236

ABSTRACT

miRNAs are small endogenous conserved non-coding RNA molecules that regulate post-transcriptional gene expression through mRNA degradation or translational inhibition, modulating nearly 60% of human genes. Cystic diseases are characterized by the presence of abnormal fluid-filled sacs in the body, and though most cysts are benign, they can grow inside tumors and turn malignant. Recent evidence has revealed that the aberrant expression of a number of miRNAs present in extracellular fluids, including plasma or serum, urine, saliva, follicular fluid, and semen, contribute to different cystic pathologies. This review aims to describe the role of different miRNAs in three worldwide relevant cystic diseases: polycystic ovarian syndrome (PCOS), polycystic kidney disease (PKD), and pancreatic cyst tumors (PCTs), as well as their potential use as novel biomarkers.


Subject(s)
Cysts , MicroRNAs , Polycystic Kidney Diseases , Polycystic Ovary Syndrome , Biomarkers/metabolism , Cysts/metabolism , Female , Follicular Fluid/metabolism , Humans , Male , MicroRNAs/metabolism , Polycystic Kidney Diseases/genetics , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/pathology
12.
Virus Res ; 308: 198631, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34788642

ABSTRACT

Nowadays, one of the major global health concerns is coronavirus disease 2019 (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Even though numerous treatments and vaccines to combat this virus are currently under development, the detailed molecular mechanisms underlying the pathogenesis of this disease are yet to be elucidated to design future therapeutic tools against SARS-CoV-2 variants. MicroRNAs (miRNAs) are small (20-24 nucleotides), non-coding RNA molecules that regulate post-transcriptional gene expression. Recently, it has been demonstrated that both host and viral-encoded miRNAs are crucial for the successful infection of SARS-CoV-2. For instance, dysregulation of miRNAs that modulate multiple genes expressed in COVID-19 patients with comorbidities (e.g., type 2 diabetes, lung adenocarcinoma, and cerebrovascular disorders) could affect the severity of the disease. Thus, altered expression levels of circulating miRNAs might be helpful to diagnose this illness and forecast whether a COVID-19 patient could develop a severe state of the disease. Besides, researchers have found a number of miRNAs could inhibit the expression of proteins, such as ACE2, TMPRSS2, spike, and Nsp12, involved in the life cycle of SARS-CoV-2. Accordingly, miRNAs represent potential biomarkers and therapeutic targets for this devastating viral disease. Therefore, in this current review, we present the recent discoveries regarding the clinical relevance and biological roles of miRNAs in COVID-19.


Subject(s)
COVID-19 , MicroRNAs , COVID-19/genetics , Humans , MicroRNAs/genetics , SARS-CoV-2
13.
Phytother Res ; 36(2): 705-729, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34932245

ABSTRACT

MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are two main categories of noncoding RNAs (ncRNAs) that can influence essential biological functions in various ways, as well as their expression and function are tightly regulated in physiological homeostasis. Additionally, the dysregulation of these ncRNAs seems to be crucial to the pathogenesis of human diseases. The latest findings indicate that ncRNAs execute vital roles in cancer initiation and progression, and the cancer phenotype can be reversed by modulating their expression. Available scientific discoveries suggest that phytochemicals such as polyphenols, alkaloids, terpenoids, and organosulfur compounds can significantly modulate multiple cancer-associated miRNAs and lncRNAs, thereby inhibiting cancer initiation and development. However, despite promising outcomes of experimental research, only a few clinical trials are currently being conducted to evaluate the therapeutic effectiveness of these compounds. Nevertheless, understanding phytochemical-mediated ncRNA regulation in cancer and the underlying molecular mechanisms on tumor pathophysiology can aid in the development of novel therapeutic strategies to combat this deadly disease.


Subject(s)
MicroRNAs , Neoplasms , RNA, Long Noncoding , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/prevention & control , Phytochemicals/pharmacology , RNA, Long Noncoding/genetics
14.
Front Immunol ; 13: 1051963, 2022.
Article in English | MEDLINE | ID: mdl-36713386

ABSTRACT

A large proportion of the global tuberculosis (TB) burden is asymptomatic and not detectable by symptom-based screening, driving the TB epidemic through continued M. tuberculosis transmission. Currently, no validated tools exist to diagnose incipient and subclinical TB. Nested within a large prospective study in household contacts of pulmonary TB cases in Southern India, we assessed 35 incipient TB and 12 subclinical TB cases, along with corresponding household active TB cases (n=11), and household controls (n=39) using high throughput methods for transcriptional and protein profiling. We split the data into training and test sets and applied a support vector machine classifier followed by a Lasso regression model to identify signatures. The Lasso regression model identified an 11-gene signature (ABLIM2, C20orf197, CTC-543D15.3, CTD-2503O16.3, HLADRB3, METRNL, RAB11B-AS1, RP4-614C10.2, RNA5SP345, RSU1P1, and UACA) that distinguished subclinical TB from incipient TB with a very good discriminatory power by AUCs in both training and test sets. Further, we identified an 8-protein signature comprising b-FGF, IFNγ, IL1RA, IL7, IL12p70, IL13, PDGF-BB, and VEGF that differentiated subclinical TB from incipient TB with good and moderate discriminatory power by AUCs in the training and test sets, respectively. The identified 11-gene signature discriminated well between the distinct stages of the TB disease spectrum, with very good discriminatory power, suggesting it could be useful for predicting TB progression in household contacts. However, the high discriminatory power could partly be due to over-fitting, and validation in other studies is warranted to confirm the potential of the immune biosignatures for identifying subclinical TB.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Tuberculosis , Humans , Prospective Studies , Tuberculosis/diagnosis , Tuberculosis/epidemiology , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/epidemiology , Mycobacterium tuberculosis/genetics , India/epidemiology
15.
Planta ; 254(3): 57, 2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34424349

ABSTRACT

MAIN CONCLUSION: MicroRNA-mediated gene regulation in non-vascular plants is potentially involved in several unique biological functions, including biosynthesis of several highly valuable exclusive bioactive compounds, and those small RNAs could be manipulated for the overproduction of essential bioactive compounds in the future. MicroRNAs (miRNAs) are a class of endogenous, small (20-24 nucleotides), non-coding RNA molecules that regulate gene expression through the miRNA-mediated mechanisms of either translational inhibition or messenger RNA (mRNA) cleavage. In the past years, studies have mainly focused on elucidating the roles of miRNAs in vascular plants as compared to non-vascular plants. However, non-vascular plant miRNAs have been predicted to be involved in a wide variety of specific biological mechanisms; nevertheless, some of them have been demonstrated explicitly, thus showing that the research field of this plant group owns a noteworthy potential to develop novel investigations oriented towards the functional characterization of these miRNAs. Furthermore, the insights into the roles of miRNAs in non-vascular plants might be of great importance for designing the miRNA-based genetically modified plants for valuable secondary metabolites, active compounds, and biofuels in the future. Therefore, in this current review, we provide an overview of the potential roles of miRNAs in different groups of non-vascular plants such as algae and bryophytes.


Subject(s)
MicroRNAs , Gene Expression , Gene Expression Regulation, Plant , MicroRNAs/genetics , Plants/genetics , RNA, Messenger
16.
3 Biotech ; 11(6): 277, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34040926

ABSTRACT

Neem (Azadirachta indica) is a very popular traditional medicinal plant used since ancient times to treat numerous ailments. MicroRNAs (miRNAs) are highly conserved, non-coding, short RNA molecules that play important regulatory roles in plant development and metabolism. In this study, deploying a high stringent genome-wide computational-based approach and following a set of strict filtering norms a total of 44 potential conserved neem miRNAs belonging to 21 families and their corresponding 48 potential target transcripts were identified. Important targets include Squamosa promoter binding protein-like proteins, NAC, Scarecrow proteins, Auxin response factor, and F-box proteins. A biological network has also been developed to understand the miRNA-mediated gene regulation using the minimum free energy (MFE) values of the miRNA-target interaction. Moreover, six selected miRNAs were reported to be involved in secondary metabolism in other plant species (miR156a, miR156l, miR160, miR164, miR171, miR395) were validated by qPCR and their tissue-specific differential expression pattern was observed in leaves and stem. Except for ain-miR395, all the other miRNAs were found overexpressed in the stem as compared to leaves. To the best of our knowledge, this is the first report of neem miRNAs and we believe the finding of the present study will be useful for the functional genomic study of medicinal plants. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02839-z.

17.
Hum Cell ; 34(4): 1040-1050, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33908022

ABSTRACT

Alopecia areata (AA) and Androgenic alopecia (AGA) are the most common multifactorial hair loss disorders that have a serious psychological impact on the affected individuals, while frontal fibrosing alopecia (FFA) is comparatively less common. However, due to the unknown etiology and the effect of many adverse factors, the prognosis of these conditions is challenging to predict. Moreover, no approved therapy has been available to date to prevent or treat these disorders. MicroRNAs (miRNAs) are a group of evolutionary conserved small non-coding RNA molecules with significant roles in the posttranscriptional gene regulation either through mRNA degradation or translational repression. A number of biological processes are controlled by these molecules, including cell growth and differentiation, proliferation, inflammation, immune responses, and apoptosis. Recently, a handful of studies have demonstrated the impact of miRNAs on common hair loss-related disorders; however, the exhaustive molecular mechanisms are still unclear. In this review, we discussed the functional implications of miRNAs in common hair loss-related disorders and addressed their efficacy to be used for theranostic purposes shortly.


Subject(s)
Alopecia/genetics , MicroRNAs/physiology , Alopecia/pathology , Alopecia/therapy , Gene Regulatory Networks/genetics , Humans , Precision Medicine , Protein Biosynthesis/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription, Genetic/genetics
18.
Arch Biochem Biophys ; 699: 108763, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33460581

ABSTRACT

MicroRNAs (miRNAs) are small non-coding highly conserved RNA molecules that can act as master regulators of gene expression in a sequence-specific manner either by translation repression or mRNA degradation, influencing a wide range of biologic processes that are essential for the maintenance of cellular homeostasis. Chronic pediatric diseases are the leading cause of death worldwide among children and the recent evidence indicates that aberrant miRNA expression significantly contributes to the development of chronic pediatric diseases. This review focuses on the role of miRNAs in five major chronic pediatric diseases including bronchial asthma, congenital heart diseases, cystic fibrosis, type 1 diabetes mellitus, and epilepsy, and their potential use as novel biomarkers for the diagnosis and prognosis of these disorders.


Subject(s)
Asthma/physiopathology , Cystic Fibrosis/physiopathology , Diabetes Mellitus, Type 1/physiopathology , Epilepsy/physiopathology , Heart Defects, Congenital/physiopathology , MicroRNAs/physiology , Asthma/diagnosis , Asthma/metabolism , Biomarkers/blood , Biomarkers/metabolism , Chronic Disease , Cystic Fibrosis/diagnosis , Cystic Fibrosis/metabolism , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/metabolism , Epilepsy/diagnosis , Epilepsy/metabolism , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/metabolism , Humans , MicroRNAs/blood , MicroRNAs/metabolism , Pediatrics , Prognosis
19.
Commun Med (Lond) ; 1: 20, 2021.
Article in English | MEDLINE | ID: mdl-35602206

ABSTRACT

Background: A major hurdle in translational endometrial cancer (EC) research is the lack of robust preclinical models that capture both inter- and intra-tumor heterogeneity. This has hampered the development of new treatment strategies for people with EC. Methods: EC organoids were derived from resected patient tumor tissue and expanded in a chemically defined medium. Established EC organoids were orthotopically implanted into female NSG mice. Patient tissue and corresponding models were characterized by morphological evaluation, biomarker and gene expression and by whole exome sequencing. A gene signature was defined and its prognostic value was assessed in multiple EC cohorts using Mantel-Cox (log-rank) test. Response to carboplatin and/or paclitaxel was measured in vitro and evaluated in vivo. Statistical difference between groups was calculated using paired t-test. Results: We report EC organoids established from EC patient tissue, and orthotopic organoid-based patient-derived xenograft models (O-PDXs). The EC organoids and O-PDX models mimic the tissue architecture, protein biomarker expression and genetic profile of the original tissue. Organoids show heterogenous sensitivity to conventional chemotherapy, and drug response is reproduced in vivo. The relevance of these models is further supported by the identification of an organoid-derived prognostic gene signature. This signature is validated as prognostic both in our local patient cohorts and in the TCGA endometrial cancer cohort. Conclusions: We establish robust model systems that capture both the diversity of endometrial tumors and intra-tumor heterogeneity. These models are highly relevant preclinical tools for the elucidation of the molecular pathogenesis of EC and identification of potential treatment strategies.

SELECTION OF CITATIONS
SEARCH DETAIL
...